Sharpened dynamics alternative and its C1-robustness for strongly monotone discrete dynamical systems
نویسندگان
چکیده
For strongly monotone dynamical systems, the dynamics alternative for smooth discrete-time systems turns out to be a perfect analogy of celebrated Hirsch's limit-set dichotomy continuous-time semiflows. In this paper, we first present sharpened C 1 -smooth dissipative system { F 0 n } ∈ N (with an attractor A ), which concludes that there is positive integer m such any orbit either manifestly unstable; or asymptotic linearly stable cycle whose minimal period bounded by . Furthermore, show -robustness alternative, is, -perturbed ϵ ( not necessarily monotone), initiated nearby will admit with same The improved generic convergence cycles -system , as well perturbed thus obtained by-products and its -robustness. results are applied nonlocal -perturbations time-periodic parabolic equations give typical periodic solutions periods uniformly bounded.
منابع مشابه
Monotone Dynamical Systems
1 Strongly Order-Preserving Semiflows 6 1.1 Definitions and Basic Results . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Nonordering of Omega Limit Sets . . . . . . . . . . . . . . . . . . . . . . 12 1.3 Local Semiflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4 The Limit Set Dichotomy . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.5 Q is plentiful ....
متن کاملobservational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولConvergence rates for forward-backward dynamical systems associated with strongly monotone inclusions
We investigate the convergence rates of the trajectories generated by implicit first and second order dynamical systems associated to the determination of the zeros of the sum of a maximally monotone operator and a monotone and Lipschitz continuous one in a real Hilbert space. We show that these trajectories strongly converge with exponential rate to a zero of the sum, provided the latter is st...
متن کاملstudy of bifurcation and hyperbolicity in discrete dynamical systems
bifurcations leading to chaos have been investigated in a number of one dimensional dynamical systems by varying the parameters incorporated within the systems. the property hyperbolicity has been studied in detail in each case which has significant characteristic behaviours for regular and chaotic evolutions. in the process, the calculations for invariant set have also been carried out. a bro...
متن کاملjordan c-dynamical systems
in the first chapter we study the necessary background of structure of commutators of operators and show what the commutator of two operators on a separable hilbert space looks like. in the second chapter we study basic property of jb and jb-algebras, jc and jc-algebras. the purpose of this chapter is to describe derivations of reversible jc-algebras in term of derivations of b (h) which are we...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2022
ISSN: ['0022-1236', '1096-0783']
DOI: https://doi.org/10.1016/j.jfa.2022.109538